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Abstract

The concept of an anisotropic vector space with a tensor basis which is invariant under a symmetry transformations of a three-
dimensional Euclidean vector space is introduced using the example of symmetric second- and fourth-rank Euclidean tensors.
In addition to the traditional operation of summation, the operation of multiplication in a fixed tensor basis is introduced for the
elements of this space, that is, the axioms of a ring with an identity element and zero divisors, which enable one to carry out algebraic
and functional operations. The possibilities of the proposed mathematical procedure are illustrated using examples of anisotropic
tensor functions of a tensor argument, by the general solution of the classical problem of calculating the mean value of the tensor
of the moduli of elasticity of a single-phase grain-oriented polycrystalline material and the construction of the strength surfaces of
anisotropic composite materials.
© 2006 Elsevier Ltd. All rights reserved.

1. Anisotropic tensor spaces

Following the well-known approach,! we consider a six-dimensional space of symmetric second-rank tensors
S=symE®ECT,=EQ®E
Here E are the vectors of a three-dimensional Euclidean vector space, E3. In the six-dimensional space S, and an

orthonormalized basis ®® (k=1,2,...,6)exists such that any symmetric second-rank tensor o can be represented in
the form

PEIRC
o = zakm(k)’ o® . o® = mﬁf’wﬁj’ - 3,

where o € R are the coordinates of the symmetric tensor in the given tensor basis. Here,

k

Here and everywhere henceforth, & takes the values of 1, 2, ..., 6 and a summation sign, unless otherwise stated,
denotes summation from k=1 to k=6,
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In addition to the linear operations of the summation of tensors and the multiplication of a tensor by a number, the
operation of the multiplication of two tensors in a fixed basis ®® is introduced.

Definition 1. The tensor aff = Zakﬁkw(k) € S, where oy, and 3 are the coordinates of the tensors o and 3 in the basis
»® is called the product of two symmetric tensors of the second rank o and B in the basis »®.

Definition 2. The tensor w =Y w® is called the director of the orthonormal basis w®.

The basis w® is invariant under the symmetry transformations of the vector space E>.

1.1. The case of orthotropic symmetry

o™ = diag(o!™, of”, o), m =1,2,3

Using the quaternion representation of the numerical triplets (u)(lk) , u)(zk) , wgk) ), which constitute an orthonormalized

basis in the space R3.2 we have

1 . 2 2 2 2
W = diag(pp + pi — P — P 2(P1P2 - PoP3)> 2(PoP2 + P1P3))

o =
2 . 2 2 2 2
o? = diag(2(pop3 + p1P2)s Po— P1+ P2— P3 2(P2p3— PoPy))
3 . 2 2 2 2
o = diag(2(p,ps - Pop2)s 2(PoPy + P2P3)s Py~ Pi— P2+ P3)

Here,p%—}—p%—i—p%—i—p%: 1.

1.2. The case of orthotropy accompanying bulk isotropy (one of the basis tensors is spherical)
i diag(1, ¢q,,—1- diag(1, g5, —1-
o) = diag(1, 1, l), o? = g(1, q, q) o = g(1, g5 q3)

J3 «/if\ll‘HIz‘HI; «/2»\/1‘”13""]5

where g2 3 =t £ V1 +1+12

1.3. The case of tetragonal symmetry and transverse isotropy
) _ diag(1,1,4,) @ _ diag(1,1,49,) 3) _ diag(1,-1,0)
0 = ——, 0 =, 0 = =
J2 + q% J2 + q§ Ng)
where g1 2 =t £ /2 + 12.

1.4. The case of cubic symmetry
(1) _ diag(1,1,1) o? = diag(1, 1,-2) o? = diag(1, -1, 0)

3 NG 2

In all of the above cases

®

@ 1 000 ) 1 001 © 1 010
o°"=—1001f @ =-—71000| ® =-21100
2 2 2

2 010 2 100 2 000

It can be shown by direct verification that the bases »®) which have been obtained are orthonormalized.

It can also be shown that, in the case of the corresponding symmetry transformations of the space E>, the tensor
product does not change and the scalar product a — 3 is the scalar product of the tensor a 3 with the director of the
tensor basis, that is,

a-B=(af) o
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Definition 3. The tensor space S, in which the operation of the multiplication of two tensors in a fixed tensor basis
was introduced, is called an anisotropic tensor space S.

The axioms of an associative-commutative ring with an identity element w and zero divisors are satisfied in the
space S.
Moreover, for elements which are not zero divisors,

o -1
BT oaf” (ByB,---Bs#0)

The director of the basis is the tensor identity element of the space S and, by virtue of the axioms which have been
adopted in this space, it is possible to carry out algebraic and functional operations.

The algebraic identities

Vo e $(0,0,...06 % 0) 3o o0 = 0

1 - -1 -1
(oc+[3)2 = a2+2aB+ﬁ2; o' —(a+m) = o (a+m) 7, 0, 0,... 0 %0, £ -

are easily verified.

In a similar manner, an anisotropic space 7y = S ® § of fourth-rank tensors, which are symmetrical with respect
to the first two and the last two indices and the extreme pairs of indices, can be defined. The system 0o® @ v® and
the tensor identity element, that is, the tensor

I = Zm(k)®0)(k), or Zm(k) (k)

tjmn

is the basis of this space, which is invariant under symmetry transformations of the vector space E>. In this case,

(D(k) ® (D(k) . w(l) ® (D(l - w(k)w(k)m(l)m(l) =8,

2. Anisotropic tensor functions of a tensor argument

‘We will call the set of tensors

o = Zakm("), o, € M, cR

the domain D C S of the anisotropic tensor space S.

We shall say that an anisotropic tensor function f (o) of corresponding symmetry is defined in the domain D of the
space S if a law is stated according to which a tensor f(a) € S is set in correspondence to each tensor « from D. In the
basis ®®, this law can be written in the form

(k)

F(@) = Y @0y, 0y, .y )0, @y, @y oy ag) = f() - 0F

where ¢r(ag, ay, ..., ag) are scalar functions which are defined when oy € M.
We now introduce elementary anisotropic tensor functions of a tensor argument into the treatment as a generalization
of conventional elementary functions. A power function is introduced by the equality

= Za,foo(k), peR

Logarithmic, basic exponential and trigonometric function

(k)

k o (k) . . k
no = ¥ noo®, =Y 0®, sina = Y sina0", cosa = Zcosakm( )

are introduced in a similar way
A rational function is introduced by the equality
P,(a) z P, (o) o
Qn(0) On (Otk)
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where n and m are integral powers of tensor polynomials and P, (), Oi(ox) are polynomials above the field of real
numbers. This function is not defined for values of oy, which are roots of the equations Q,, (o) =0.

It can be shown that properties which are similar to those of ordinary elementary functions are satisfied in the case
of the elementary anisotropic tensor functions which have been introduced.

An anisotropic tensor function of a tensor argument in the space T} is defined in a similar way

k k k k
flo) = Z(pk((xl, 0y, ..., aé)w( '@ o ); 0 (0, Oy, ..., 0g) = f(O) - 0o® ® ),

ae T, fla) e T

3. Mean values of tensor quantities

We shall illustrate the possibilities of the proposed mathematical apparatus taking the example of the solution of
the classical problem of calculating the mean value of the tensor of the moduli of elasticity of a single-phase grain-
orientated polycrystalline material.>* When the operations which have been introduced are taken into account, the
corresponding mean can be determined by the equality

1/p
P = [f(Q(g)*c)pF(g)dg) ., peR; [F(g)dg =1
G G

Here Q * ¢ <> QimQjnOprQysCmnrs is the orbit of the tensor ¢, ||Qj;|| is the matrix of the direction cosines (the rotation
matrix) which defines the position of the crystallographic axes of the grains of the polycrystalline material, g is an
element of the space of the rotations G and F (g) is a grain-orientation function.

When p =1, we have the mean value of the tensor which corresponds to the Voigt model, when p = —1, to the Reuss
model and, when p — 0, the geometric mean, which is independent of whether the tensor of the moduli of elasticity or
the tensor of the compliances, which is inverse to it, is averaged.

We now consider the determination of the geometric mean of the moduli of elasticity tensor in detail. As in the case
of scalar quantities, this means that

inc®” = [Q(g) * IncF(g)dg
G

When account is taken of the representation of logarithmic tensor functions, we have

Yinr"a?®a" = [o(e) * ¥ (1nh,0" ® 0“)F(g)dg = 3 Ik (0 * 0¥ ® o)
G

Averaging over a set of all orientations of the grains of the polycrystalline material is denoted by angular brackets,
0® @ 0® and ®? @ &P are basis tensors corresponding to the symmetry of the grains and the polycrystalline material

and A\ and )\EO) are the Kelvin—Rychlewski! moduli of a grain and of the material.
Taking account of the orthogonality of the basis tensors, we have

nA” = ¥ (0 * 0¥ ® 0®) - 6" ® &
or
MY = AP py = (2 0P @) 0¥ e a?

It can be seen from this relation that the geometric mean moduli of elasticity are determined by the moduli of
elasticity of a grain and the weighting factors py;, which depend on the structure of the basis tensors. In the case of
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cubic symmetry of the tensor ¢ and orthotropic symmetry of the tensor ¢*), we have
A = 3K
x(o) = x“xx“’ X23 = 381 -8y +A3-2g5 3(A, - Ay)

M= 1

24, +2A; - 24,

Ay = 7‘357911_%, Xs = 283+ 24,24,

AL = AFn,TE y = 2A, 424,24,
= <Qi21Qi22+Qi22Qi23+Qi23Qi21>’ i=1273; 0<A<1/3

A -A
oy = tEN1+147, t=A1 2
3

—AZ

Here K=c11 +2cy2 is the bulk modulus, N\» = ¢11 — ¢12, Mg =2c44, ¢;j are the moduli of elasticity in matrix notation and
A; are grain-orientation parameters.
In the case of an equiprobable distribution of the crystallographic axes (a quasi-isotropic polycrystalline material)

A=A, =A;=1/5
For a distribution of the crystallographic axes which is axisymmetric about the Ox3 axis ( a macroscopically
transversely-isotropic polycrystalline material), the condition
A=A, = (1+3A5)/8

is satisfied.
In this case,

(0) _ 4 1-345, 34, (0) (0) 285, 1-24, 0) _ 5 (0) _ (1 A9)/2
kz_kz A, Ay =Ahs =A, Ay, Ay = A

(1+4,)/2

Ay
For a quasi-isotropic material, when A3 =1/5, the well-known result®
(20) _ k(}O) - mO) - )Lg(]) _ }\‘(60) _ 7»2/57»3/5 — 024) _ c44A_2/5
A = 2c4(cy - Clz)_l = MM,

follows from these relations, where A is the elastic anisotropy parameter of a single crystal.

For the special case of the distribution of the crystallographic axes when Aj = A =1/4, A3z =0, the results obtained
here is identical to the well-known exact solution within the framework of the model of a polycrystalline material being
considered.®

The geometric mean moduli of elasticity tensors and the compliances of a macroscopically orthotropic polycrys-
talline material are found using the expansions

- . -1 -
C(O) - 27“;60)(’)(1() ® w(k), s 2(7‘(0) (k) ® 0 (k)

where ®% are the basis tensors of the space S corresponding to orthotropy with bulk isotropy.

4. Limiting criteria

We will now use the proposed mathematical apparatus to obtain phenomenological limiting criteria of certain
anisotropic materials. Considering the stress space Y, the elements of which are stress tensors at a given point of an
anisotropic body (o € ¥ C §), we will represent the limiting surface by the equality

f(o)-o=1
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In the case of orthotropic materials, on representing, in particular, the function f{o) by a second-degree tensor
polynomial

f(o)=0c’+Po; o= Zakm("), B= ZBkm(k), c= Zka(k), o’ = Zcim(")

and superposing the basis vectors of the space E> with the principal axes of anisotropy, we have
2 2 2
0,07+ 0,05 + ... + 0cOg + P10, + B0y + ... + B0 = 1

Under the assumption that the limiting state is invariant under a change in the specified direction of shear to the
opposite direction, we have

2 2 2
0,0} + 0,05 + ... + 0cOg + B,0, + B,0,+ P30; = 1

This phenomenological equation of the limiting surface contains nine dimensional material constants and three
dimensionless parameters, which determine the form of the basis tensors o, 0@, »® of the anisotropic tensor
space. With additional hypotheses of a physical nature, the number of parameters which are subject to experimental
determination can be reduced.

In the case of a spatially-reinforced composite material of cubic symmetry, for which the direction of the rein-
forcement coincides with the three-and four-fold symmetry axes of a cube in E>, when account is taken of possible
fracture by different mechanisms (fracture of the reinforcing fibres under tension or the loss of their stability under
compression), we arrive, in the simplest case, at a four-constant strength surface in six-dimensional stress space

2 2 2
0,07+ 0,0, +... +0x0s+ P60, =1, 0, =03, 0 = 05 = O

1 01110+ 033
o, =gl = L2773 0,=0-0

NE]

6,,-0

6, =0 0P = 2" %2
J2

6
o, =06-0% = 20,5, o5=0-0° = 20;, o5=0-0% =20,

@) _ O11+0n—203

J6

The physical meaning of the material constants of this equations becomes clear if one considers the four independent
stress states

1)6y; = 0y =033 = p,, Oy =03 =0, =03

2) 0y = Op = 033 = —p_, Oy = O3 = 0 = 0;

3) 0y = =0y =T, O3 = Oy =03 =0 =03
4) 63 = T, Oy = Oy = O3 = O3 = Oy, = 0.

Here, p+ and p_ are the limit stresses under isotropic tension and compression, and 71 and T, are the limit stresses
under simple shear in a plane which passes through the two- and four-fold axes of symmetry in the directions of the
two- and four-fold axes respectively.

Substituting these relations into the strength surface equation we obtain

3a,ps+BBip, = 1, 3ayp’-BBip. =1, 20,71 = 1, 20,7 = 1

whence

o = 1 B, = P_— D+ o = 1 o = 1
1= 3, i = 77— %="—7 ¥U=—
3p.p_ JSp.p. 21; 21;

When the limiting state is independent of the spherical part of the stress tensor in the case of the condition 11 =T, =T,

on changing to a five-dimensional pure shear space,’” we obtain the simplest strength surface of an isotropic material



Ye.A. Mityushov / Journal of Applied Mathematics and Mechanics 70 (2006) 657-663 663
in the form of the equation of a sphere in five-dimensional space
2.2, 2, 2 2 2
0, +03+0,+05+0g = 21

which corresponds to the widely used energy theory of strength or the Huber-Mises-Hencky yield condition in the
mathematical theory of plasticity.
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